5 research outputs found

    SPH fluids for viscous jet buckling

    Get PDF
    We present a novel meshfree technique for animating\ud free surface viscous liquids with jet buckling effects, such as\ud coiling and folding. Our technique is based on Smoothed Particle\ud Hydrodynamics (SPH) fluids and allows more realistic and\ud complex viscous behaviors than the preceding SPH frameworks\ud in computer animation literature. The viscous liquid is modeled\ud by a non-Newtonian fluid flow and the variable viscosity under\ud shear stress is achieved using a viscosity model known as Cross\ud model. The proposed technique is efficient and stable, and our\ud framework can animate scenarios with high resolution of SPH\ud particles in which the simulation speed is significantly accelerated\ud by using Computer Unified Device Architecture (CUDA)\ud computing platform. This work also includes several examples\ud that demonstrate the ability of our technique.FAPESP - processos nos. 2013/19760-5 e 2014/11981-5FAPES - processos no. 53600100/11CNP

    Role of Hydrogen in High-Yield Growth of Boron Nitride Nanotubes at Atmospheric Pressure by Induction Thermal Plasma

    No full text
    We recently demonstrated scalable manufacturing of boron nitride nanotubes (BNNTs) directly from hexagonal BN (hBN) powder by using induction thermal plasma, with a high-yield rate approaching 20 g/h. The main finding was that the presence of hydrogen is crucial for the high-yield growth of BNNTs. Here we investigate the detailed role of hydrogen by numerical modeling and <i>in situ</i> optical emission spectroscopy (OES) and reveal that both the thermofluidic fields and chemical pathways are significantly altered by hydrogen in favor of rapid growth of BNNTs. The numerical simulation indicated improved particle heating and quenching rates (∼10<sup>5</sup> K/s) due to the high thermal conductivity of hydrogen over the temperature range of 3500–4000 K. These are crucial for the complete vaporization of the hBN feedstock and rapid formation of nanosized B droplets for the subsequent BNNT growth. Hydrogen is also found to extend the active BNNT growth zone toward the reactor downstream, maintaining the gas temperature above the B solidification limit (∼2300 K) by releasing the recombination heat of H atoms, which starts at 3800 K. The OES study revealed that H radicals also stabilize B or N radicals from dissociation of the feedstock as BH and NH radicals while suppressing the formation of N<sub>2</sub> or N<sub>2</sub><sup>+</sup> species. Our density functional theory calculations showed that such radicals can provide faster chemical pathways for the formation of BN compared with relatively inert N<sub>2</sub>

    Hydrogen-Catalyzed, Pilot-Scale Production of Small-Diameter Boron Nitride Nanotubes and Their Macroscopic Assemblies

    No full text
    Boron nitride nanotubes (BNNTs) exhibit a range of properties that are as compelling as those of carbon nanotubes (CNTs); however, very low production volumes have prevented the science and technology of BNNTs from evolving at even a fraction of the pace of CNTs. Here we report the high-yield production of small-diameter BNNTs from pure hexagonal boron nitride powder in an induction thermal plasma process. Few-walled, highly crystalline small-diameter BNNTs (∼5 nm) are produced exclusively and at an unprecedentedly high rate approaching 20 g/h, without the need for metal catalysts. An exceptionally high cooling rate (∼10<sup>5</sup> K/s) in the induction plasma provides a strong driving force for the abundant nucleation of small-sized B droplets, which are known as effective precursors for small-diameter BNNTs. It is also found that the addition of hydrogen to the reactant gases is crucial for achieving such high-quality, high-yield growth of BNNTs. In the plasma process, hydrogen inhibits the formation of N<sub>2</sub> from N radicals and promotes the creation of B–N–H intermediate species, which provide faster chemical pathways to the re-formation of a h-BN-like phase in comparison to nitridation from N<sub>2</sub>. We also demonstrate the fabrication of macroscopic BNNT assemblies such as yarns, sheets, buckypapers, and transparent thin films at large scales. These findings represent a seminal milestone toward the exploitation of BNNTs in real-world applications

    Hydrogen-Catalyzed, Pilot-Scale Production of Small-Diameter Boron Nitride Nanotubes and Their Macroscopic Assemblies

    No full text
    Boron nitride nanotubes (BNNTs) exhibit a range of properties that are as compelling as those of carbon nanotubes (CNTs); however, very low production volumes have prevented the science and technology of BNNTs from evolving at even a fraction of the pace of CNTs. Here we report the high-yield production of small-diameter BNNTs from pure hexagonal boron nitride powder in an induction thermal plasma process. Few-walled, highly crystalline small-diameter BNNTs (∼5 nm) are produced exclusively and at an unprecedentedly high rate approaching 20 g/h, without the need for metal catalysts. An exceptionally high cooling rate (∼10<sup>5</sup> K/s) in the induction plasma provides a strong driving force for the abundant nucleation of small-sized B droplets, which are known as effective precursors for small-diameter BNNTs. It is also found that the addition of hydrogen to the reactant gases is crucial for achieving such high-quality, high-yield growth of BNNTs. In the plasma process, hydrogen inhibits the formation of N<sub>2</sub> from N radicals and promotes the creation of B–N–H intermediate species, which provide faster chemical pathways to the re-formation of a h-BN-like phase in comparison to nitridation from N<sub>2</sub>. We also demonstrate the fabrication of macroscopic BNNT assemblies such as yarns, sheets, buckypapers, and transparent thin films at large scales. These findings represent a seminal milestone toward the exploitation of BNNTs in real-world applications

    Band-Tail Transport of CuSCN: Origin of Hole Extraction Enhancement in Organic Photovoltaics

    No full text
    Copper thiocyanate (CuSCN) is known as a promising hole transport layer in organic photovoltaics (OPVs) due to its good hole conduction and exciton blocking abilities with high transparency. Despite its successful device applications, the origin of its hole extraction enhancement in OPVs has not yet been understood. Here, we investigated the electronic structure of CuSCN and the energy level alignment at the poly­(3-hexylthiophene-2,5-diyl) (P3HT)/CuSCN/ITO interfaces using ultraviolet photoelectron spectroscopy. The band-tail states of CuSCN close to the Fermi level (<i>E</i><sub>F</sub>) were observed at 0.25 eV below the <i>E</i><sub>F</sub>, leading to good hole transport. The CuSCN interlayer significantly reduces the hole transport barrier between ITO and P3HT due to its high work function and band-tail states. The barrier reduction leads to enhanced current density–voltage characteristics of hole-dominated devices. These results provide the origin of hole-extraction enhancement by CuSCN and insights for further application
    corecore